MEANING AT WORK AND WORK ENGAGEMENT: A META-ANALYSIS

Heejin Kim & Maritza Salazar
WPPA Conference
September 7th, 2014
Agenda

• Background
• Present study: Hypotheses
• Methods
• Results
• Discussion
• Limitations
• Conclusion
Deprived of meaningful work, men and women lose their reason for existence; they go stark, raving mad.

(Fyodor Dostoevsky)
Since May et al. (2004)…
Present Study: A Meta-analysis

• To conduct a systematic review of the relationship between meaning and engagement
• To understand the conditions where the effect is stronger or weaker
Work Engagement

- A positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption
- Related to positive organizational outcomes
 - Job satisfaction
 - Organizational commitment
 - Job performance
 - Financial returns

Halbesleben, 2010; Salanova, Agut, & Peiro, 2005; Schaufeli & Bakker, 2004; Schaufeli, Tairs, & Bakker, 2006; Xanthopoulou, Bakker, Demerouti, & Schaufeli, 2009.
Meaningful Work

• **Meaning**: the connection between two different entities or things that create a non-physical reality accessible to humans

• **Meaningful Work**: Work experienced as particularly significant and holding more positive meaning for individuals

Baumeister & Vohs, 2002; Wrzesniewski, McCauley, Rozin, & Schwartz, 1997; Wrzesniewski, 2003; Rosso, Dekas, & Wresniewski, 2010;
Hypotheses

• H1. Higher meaning at work will be correlated with higher work engagement across samples.
• H2. Moderation analyses
 a. Age
 b. Study locations
 c. Meaning measures
 d. Publication status
Methods

• Search
 • PsycINFO, Google Scholar, JSTOR, ProQuest, reference sections of review articles
 • Keywords: *Meaning*, calling, purpose, engagement
 • Peer-reviewed articles, unpublished manuscripts, dissertations and book chapters
Methods

• Inclusion criteria
 • a. empirically test the relationship between meaning and engagement
 • b. include effect sizes either on the manuscripts or upon request, and
 • c. be conducted in the work setting

► k=22
Methods

• Meta-analysis with a mixed model
 • Mean effect size: random-effects model
 • Moderators: fixed-effect model

• Coding
 • Systematic coding scheme
 • r statistics
Results

• Main effect
 • $r = .60$, $z = 15.81$, $p < .001$
 • 95% CI [.55, .66]
 • All the primary ES [.32, .77] were significant

• Heterogeneity of samples (k=22)
 • $Q = 258.88$, $df = 21$, $p < .001$; $I^2 = 91.89\%$
Stem-and-leaf Plot

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>0</td>
</tr>
<tr>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>2 3 7</td>
</tr>
<tr>
<td>.4</td>
<td>3 5 7</td>
</tr>
<tr>
<td>.5</td>
<td>9</td>
</tr>
<tr>
<td>.6</td>
<td>1 1 1 2 3 8 8 9 9</td>
</tr>
<tr>
<td>.7</td>
<td>0 1 1 4 7</td>
</tr>
<tr>
<td>.8</td>
<td></td>
</tr>
<tr>
<td>.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
1. Age

Older population had a stronger mean correlation than younger population.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderators</td>
<td>k</td>
<td>N</td>
<td>Mr</td>
<td>Zr</td>
<td>SD$_{Zr}$</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>47.20**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older</td>
<td>10</td>
<td>3,338</td>
<td>.69</td>
<td>.84</td>
<td>.02</td>
<td>.67-.70</td>
</tr>
<tr>
<td>Younger</td>
<td>9</td>
<td>2,744</td>
<td>.58</td>
<td>.66</td>
<td>.02</td>
<td>.55-.60</td>
</tr>
</tbody>
</table>

Note: **p<.001; age ranged [28.29, 47.5] and the cutoff was 38; k=19 due to missing age information;
2. Study location

The sizes of correlation varied across different study locations.

<table>
<thead>
<tr>
<th>Moderators</th>
<th>k</th>
<th>N</th>
<th>Mr</th>
<th>Zr</th>
<th>SD_{Zr}</th>
<th>95% CI</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America</td>
<td>7</td>
<td>2,074</td>
<td>.70</td>
<td>.87</td>
<td>.02</td>
<td>.68-.72</td>
<td>47.46**</td>
</tr>
<tr>
<td>Australia</td>
<td>2</td>
<td>935</td>
<td>.69</td>
<td>.85</td>
<td>.04</td>
<td>.66-.73</td>
<td>.77</td>
</tr>
<tr>
<td>Asia</td>
<td>2</td>
<td>391</td>
<td>.62</td>
<td>.72</td>
<td>.05</td>
<td>.55-.67</td>
<td>.02</td>
</tr>
<tr>
<td>Europe</td>
<td>4</td>
<td>1,508</td>
<td>.64</td>
<td>.76</td>
<td>.03</td>
<td>.61-.67</td>
<td>30.22**</td>
</tr>
<tr>
<td>Africa</td>
<td>7</td>
<td>1,760</td>
<td>.46</td>
<td>.50</td>
<td>.02</td>
<td>.42-.50</td>
<td>29.57**</td>
</tr>
</tbody>
</table>
3. Measures used

A. Meaning vs. Calling
Calling had slightly stronger correlation with engagement but the difference was not statistically significant.

<table>
<thead>
<tr>
<th>Moderators</th>
<th>k</th>
<th>N</th>
<th>Mr</th>
<th>Zr</th>
<th>SD_{Zr}</th>
<th>95% CI</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.17</td>
</tr>
<tr>
<td>Meaning</td>
<td>18</td>
<td>5,587</td>
<td>.63</td>
<td>.74</td>
<td>.01</td>
<td>.61-.64</td>
<td>222.47**</td>
</tr>
<tr>
<td>Calling</td>
<td>3</td>
<td>920</td>
<td>.66</td>
<td>.79</td>
<td>.03</td>
<td>.62-.69</td>
<td>7.04*</td>
</tr>
</tbody>
</table>
3. Measures used

B. Majority vs. Others
1) Majority: May et al. (2004)
2) Others: used once or only by the inventor(s)

<table>
<thead>
<tr>
<th>Measures</th>
<th>k</th>
<th>N</th>
<th>Mr</th>
<th>Zr</th>
<th>SD_{Zr}</th>
<th>95% CI</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>May et al., (2004)</td>
<td>13</td>
<td>3,651</td>
<td>.56</td>
<td>.64</td>
<td>.02</td>
<td>.54-.59</td>
<td>104.39**</td>
</tr>
<tr>
<td>Others</td>
<td>7</td>
<td>2,247</td>
<td>.70</td>
<td>.86</td>
<td>.02</td>
<td>.67-.72</td>
<td>77.58**</td>
</tr>
</tbody>
</table>
4. Publication status

On average, published articles reported smaller correlations than unpublished manuscripts.

<table>
<thead>
<tr>
<th>Moderators</th>
<th>k</th>
<th>N</th>
<th>Mr</th>
<th>Zr</th>
<th>SD_{Zr}</th>
<th>95% CI</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Published</td>
<td>19</td>
<td>5,769</td>
<td>.62</td>
<td>.72</td>
<td>.01</td>
<td>.60-.63</td>
<td>222.40**</td>
</tr>
<tr>
<td>Unpublished</td>
<td>3</td>
<td>899</td>
<td>.68</td>
<td>.82</td>
<td>.03</td>
<td>.64-.71</td>
<td>28.83**</td>
</tr>
</tbody>
</table>
Discussion

• Relatively small number of studies
 • Engagement literature is more focused on job itself rather than individuals’ relation with it

• Cross-generation implications

• Cross-cultural implications

• Diverse meaning measures
 • May et al. (2004): might be too broad
 • Specific to the context; increase relevance

• Issues with reporting
 • Insufficient information (e.g., mean age, number of items in measures)
Limitations and Future Directions

• More studies are needed
• Work engagement as the only outcome
 • Give the study a clear focus
 • Not enough to demonstrate that meaning at work is beneficial to organizations interested in various outcomes
Conclusion

• How employees perceive their meaning at work matters for them to engage in their work
 • Employees’ psychological perceptions of their work is an important factor to determine their level of engagement at work.

• Context matters
 • Age, Country etc.
Contact Information
Heejin Kim, M.A.
Claremont Graduate University
heejin.kim@cgua.edu